Ultra High Performance ECC over NIST Primes on Commercial FPGAs
نویسندگان
چکیده
Elliptic Curve Cryptosystems (ECC) have gained increasing acceptance in practice due to their significantly smaller bit size of the operands compared to other public-key cryptosystems. Since their computational complexity is often lower than in the case of RSA or discrete logarithm schemes, ECC are often chosen for high performance publickey applications. However, despite a wealth of research regarding highspeed software and high-speed FPGA implementation of ECC since the mid 1990s, providing truly high-performance ECC on readily available (i.e., non-ASIC) platforms remains an open challenge. This holds especially for ECC over prime fields, which are often preferred over binary fields due to standards in Europe and the US. This work presents a new architecture for an FPGA-based ultra high performance ECC implementation over prime fields. Our architecture makes intensive use of the DSP blocks in modern FPGAs, which are embedded arithmetic units actually intended to accelerate digitial signal processing algorithms. We describe a novel architecture and algorithms for performing ECC arithmetic and describe the actual implementation of standard compliant ECC based on the NIST primes P-224 and P-256. We show that ECC on Xilinx’s Virtex-4 SX55 FPGA can be performed at a rate of more than 37,000 point multiplications per second. Our architecture outperforms all single-chip hardware implementations over prime fields in the open literature by a wide margin.
منابع مشابه
ECC on Your Fingertips: A Single Instruction Approach for Lightweight ECC Design in GF(p)
Lightweight implementation of Elliptic Curve Cryptography on FPGA has been a popular research topic due to the boom of ubiquitous computing. In this paper we propose a novel single instruction based ultra-light ECC crypto-processor coupled with dedicated hard-IPs of the FPGAs. We show that by using the proposed single instruction framework and using the available block RAMs and DSPs of FPGAs, w...
متن کاملComparing Elliptic Curve Cryptography and RSA on 8-bit CPUs
Strong public-key cryptography is often considered to be too computationally expensive for small devices if not accelerated by cryptographic hardware. We revisited this statement and implemented elliptic curve point multiplication for 160-bit, 192-bit, and 224-bit NIST/SECG curves over GF(p) and RSA-1024 and RSA-2048 on two 8-bit microcontrollers. To accelerate multiple-precision multiplication...
متن کاملArea/performance trade-off analysis of an FPGA digit-serial GFð2Þ Montgomery multiplier based on LFSR
Montgomery Multiplication is a common and important algorithm for improving the efficiency of public key cryptographic algorithms, like RSA and Elliptic Curve Cryptography (ECC). A natural choice for implementing this time consuming multiplication defined on finite fields, mainly over GFð2Þ, is the use of Field Programmable Gate Arrays (FPGAs) for being reconfigurable, flexible and physically s...
متن کاملOptimized Charge Pumps for Subthreshold Operation
Over the last decade, the use of Field Programmable Gate Arrays (FPGAs) has grown from the design verification of digital systems to a wide variety of commercial and space applications for which low power consumption and re-programmability are paramount. To address the issue of low power, researchers have reported FPGAs incorporating a variety of design techniques to improve energy efficiency. ...
متن کاملC Ryptography and C Ryptanalysis on R Econfigurable D
With the rise of the Internet, the number of information processing systems has significantly increased in many fields of daily life. To enable commodity products to communicate, socalled embedded computing systems are integrated into these products. However, many of these small systems need to satisfy strict application requirements with respect to cost-efficiency and performance. In some case...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008